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Starting from the Kubo formula, we expand the Hall conductivity using a cumulant approach which con-
verges quickly at high temperatures �kBT � energy differences of initial and final scattering states� and can be
extended to low temperatures. The theory can deal with the sign, the ordinary and the anomalous contributions
to the Hall effect. When applied to include the spin-orbit interaction to first order, we recover what is essen-
tially the Karplus-Luttinger result for the anomalous Hall effect. Contact is made to the Chazalviel and
Nozières-Lewiner formulae. A side-jump-like formula is obtained by using an exact application of linear
response. We show that there exists an exact rigid Hall current which is not a Fermi level property. We
introduce a relationship between mass and diffusivity which allows us to generalize the theory to strong
disorder and even introduce a mobility edge. The formalism provides a systematic and practical way of
analyzing both ordinary and anomalous contributions to the Hall conduction including the changes of sign, and
in the presence of serious disorder. As a by-product of the method, we show that the anomalous Hall coefficient
can vary with resistance to the power n, with 1�n�2 depending on the degree of coherence.
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I. INTRODUCTION

The Hall conductivity of materials exhibits a wide and
rich variety of behavior. The interpretation is, in general, still
very difficult, even though, in principle, the information is
contained in the Kubo formula. This is true at least in linear
response to the applied electric field. The Kubo formula is
therefore the starting point of our analysis of Hall conductiv-
ity. We include the spin-orbit interaction and discuss the so-
called anomalous Hall effect �AHE�. Previously, most work
was focused on understanding the sign change of the Hall
coefficient in ordered and disordered systems,1 localization,
and the quantum Hall effect �QHE�.2 More recently, the
problem has been to understand the effect of magnetism and
of many-body corrections on the Hall effect. Considerable
progress has been made recently by integrating the spin-orbit
coupling into the Bloch wave function formalism of Kane in
crystals, and applying these wave functions and other first-
principles numerical methods3 to study the AHE effect in
magnetic materials.4 In these papers, the emphasis is on or-
der, and disorder is only represented by a uniform lifetime.
Most magnetically doped semiconductors and magnetic al-
loys can, however, not really be considered to be in the weak
scattering regime, and therefore, in the present approach, we
have inverted this priority. We emphasize the absence of
Bloch symmetry rather than its presence.5–10 The aim is to
develop practical formulae which can deal with disorder, the
sign, the side-jump Hall effect problem, and the skew
scattering/intrinsic Hall effect problem.

The AHE is now a well established observation in mag-
nets, and a number of explanations have been proposed,7 and
will be discussed here. All explanations are based, in one
way or another, on the spin-orbit mechanism. Thus, it is ac-
cepted that spin-orbit coupling causes the anomalous Hall
conductivity contribution.

Much progress has been made recently on understanding
the origin of the AHE and this has generated exciting phys-
ics. Traditionally it was thought that only the spin-orbit skew
scattering mechanism1,11,12 gives rise to a magnetism �Mz�
dependent Hall coefficient. This process depends on the con-
ductivity relaxation time or relaxation time squared, depend-
ing on whether the skew scattering is itself rate determining
for conductivity or not. Traditionally, skew scattering is de-
rived as an extrinsic effect; i.e., it is due to impurity scatter-
ing, and not to the host spin-orbit interaction. The intrinsic
spin-orbit interaction produced by the host crystal potential
had been invoked as a source of AHE by Karplus and
Luttinger10 but later rejected by Smit13 who claimed that the
intrinsic effect is negligible. Earlier, it had been shown by
Mott and Massey14 that electron scattering from Coulomb
potentials is asymmetric with respect to spin direction, with
spin up going more to one side, and those with spin down
more to the other. When the electron gas is magnetized, there
is a net transverse Hall current. When the asymmetric scat-
tering is at impurity sites, this process is called skew scatter-
ing as mentioned above, and has been discussed by several
authors.11,12 The important point about skew scattering is that
the net spin-orbit coupling at the impurity site can be
strongly enhanced by the host crystal. This is really what
makes this process so important. For a detailed account of
the history and progress in understanding the AHE, see
Ref. 8.

II. KUBO FORMULA FOR THE LONGITUDINAL
AND TRANSVERSE CONDUCTIVITY

The frequency ��� dependent conductivity in linear re-
sponse to an electric field is usually written as1,15,16
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��� =
i�e2

	
lim

→0

�
�,�

���v�������v����
� − � + �� + i


f��� − f���
� − �

. �1�

This form is general for any exact set of eigenstates ��� and
energies �; spin summation is implied. The f�� are the
Fermi functions and 	 is the volume. The velocity operators
v� are given by Heisenberg’s equation of motion.

For the general case of a material which need not be pe-
riodic, the spin-orbit term in the Hamiltonian is

Hso =
�

4m2c2 ��V�r� � p� · � , �2�

where

V�r� = �
n

eZn

4�0�r − Rn�
− eFx . �3�

In Eqs. �2� and �3�, m is the bare electron mass, c is the speed
of light, p is the momentum operator, and � is the Pauli spin
operator which is a vector containing the Pauli’s matrices,
i.e., ��x ,�y ,�z�. In Eq. �3�, F is the external applied electric
field, e is the electric charge, Zn is the effective local charge,
0 is the permittivity, r and x are positions operators for the
charges, and Rn is the position of the fixed ions that make the
lattice. The velocity operators can then be written as

vx = vx
0 +

�

4m2c2 ��zV�r��y − �yV�r��z� , �4�

vy = vy
0 −

eBzx

m
+

�

4m2c2 ��xV�r��z − �zV�r��x� , �5�

where we have used the Landau gauge for the vector poten-
tial, A= �0,Bzx ,0�. The vx

0 and vy
0 are − i�

m
�
�x and − i�

m
�
�y , re-

spectively. The choice of the minus sign in −eBzx /m implies
that e=−�e� since the kinetic part of the Hamiltonian for a
charge q in a field is T=1 /2m�p−qA�2.

The spin-dependent terms in Eqs. �4� and �5� can be im-
portant in magnets. We shall consider them explicitly in Sec.
V.

The Hall effect is given by the antisymmetric part of the
transverse conductivity.11,17 To write the antisymmetric Hall
conductivity, we note that for nonzero frequency it is the
anti-Hermitian part11 �xy

a = 1
2 ��xy −�yx

� �. In the dc limit we
have

�xy
a =

�e2

	
lim

→0

�
�,�

− i���vx������vy���
f��� − f���

�� − ��2 + 
2 . �6�

We shall now derive the Hall conductivity in a general way
which will include both the skew scattering and the intrinsic
contributions.

III. HALL EFFECT USING A CUMULANT EXPANSION
OF THE KUBO FORMULA

One way to derive the contributions to the Hall effect,
with disorder present, is to rewrite the Kubo formula using
the Heisenberg equation of motion,

���x��� = − i�
���vx���
� − �

, �7�

which is true in any finite box �length L� without dissipation.
Then Eq. �6� becomes

�xy
a =

e2

	
lim

→0

�
�,�

�f��� − f������ − ��
�� − ��2 + 
2 ���x������vy��� .

�8�

We drop the a superscript for the Hall conductivity, but it
will be implicit that we refer to the antisymmetric part unless
otherwise mentioned. In order to demonstrate the cumulant
technique, we first consider the limits of high temperatures
when ��−���kBT and, of small magnetic fields kBT
���c. This is the limit when the matrix elements are domi-
nated by intraband scattering with weak B field. We expand
the function

f��� − f��� 	 e−��−f�/kBT − e−��−f�/kBT

= 
� − �

kBT
�e−��−f�/kBT

−
1

2!

� − �

kBT
�2

e−��−f�/kBT + . . . �9�

and substitute Eq. �9� and Eq. �7� into Eq. �6�. This gives us
a cumulant expansion of the Hall conductivity in powers of

1
kBT where one can use the operator identity

�� − ��A�� = ����A,H���� , �10�

where �A ,H� is the commutator of A with the Hamiltonian H
and A��= ���A���, to reduce and evaluate the terms generated
by the expansion.

The high T expansion converges rapidly as soon as kBT is
larger than the typical energy difference in the matrix ele-
ments. In particular, this is obviously true as soon as kBT
exceeds the bandwidth. But, we can also have a more general
expansion that may also be valid at low temperature though
the justification in this case is more complicated. To obtain
the more general cumulant expansion at any temperature, we
observe that in Eq. �6� the dominant region is around �

	�. Thus, we carry out a complete Taylor expansion of
f��� around � and obtain

f��� − f��� = 
−
� f���

��
��� − �� + . . . �11�

When we substitute Eq. �11� �strictly equivalent to Eq. �9� at
high T� into the Kubo formula �Eq. �8��, we obtain the first-
order term

�xy
�1 = −

e2

	
lim

→0

�
�,�


−
� f���

��
� �� − ��2 + 
2 − 
2

�� − ��2 + 
2

����x������vy���

= −
e2

	��
�

−

� f���
��

����xvy��� − lim

→0

�
�,�


−
� f���

��
�
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�

2

�� − ��2 + 
2 ���x������vy����
= −

e2

	
�
�

−

� f���
��

����xvy��� , �12�

where we have used the identity lim
→0

2

��−��2+
2 =�
��

−��lim
→0 
=0.
Apart from this first-order term �Eq. �12��, we obtain an

infinite series of higher order cumulant which can be gener-
ated via Eq. �10�. These higher order cumulants represent
correction to the first-order result. The first-order term will
turn out to have very simple physical interpretation. The cor-
rections generated by the higher order cumulants resulting
from Eq. �11�, and when evaluated at low temperatures, must
be studied in detail as it is not immediately self-evident that
they represent lower order corrections. This is done later in
the paper, but at this stage, it is already possible to note that
the corrections represent, via Heisenberg’s equation of mo-
tion, and from Eq. �10�, higher and higher time derivatives of
the velocity operator. When using the effective-mass Hamil-
tonian, one can show that beyond the second-order cumulant,
the corrections which are linear in the cyclotron frequency or
magnetization all scale with the disorder potential and spin-
orbit coupling, and therefore are lower order corrections.
From the mathematical structure and to keep the terms linear
in Bz, it is thus essential therefore only to keep the second-
order cumulant at low temperatures. This will now be shown
step by step as we proceed with the analysis of the various
contributions to the Hall current. Let us also remember that
in Eq. �12�, ��� is a magnetic-field-dependent exact eigen-
state.

In order to rewrite the matrix element in a simple way, we
show in Appendix A that we can write the derivative of the
eigenvalue with respect to the magnetic field as

���Bz�
�Bz

= − e���xvy��� −
g�B

2
����

i

�z
i ��� , �13�

where vy does not contain the spin-orbit term �Eq. �5�� con-
trary to vy in Eq. �12�. The spin-orbit term of vy will be
treated later in Sec. V C.

The Hall conductivity only comes from the first term on
the right-hand side of Eq. �13�, the orbital term. The way to
handle this is to introduce initially two different magnetic
fields, one acting on the orbital part Borb and one giving the
Zeeman energies Bz. We can thus rewrite Eq. �12� as

�xy
�1 =

e2

	

1

e �
�

−

� f���
��

� ��

�Borb
. �14�

Only the derivative of the energy eigenvalues with respect to
the orbital field Borb gives the Hall conductivity. An advan-
tage of this representation is that the spin-orbit energy can
now be treated in first-order perturbation theory, as we shall
see later.

The way disorder should be treated for numerical calcu-
lations is as follows. The Hall conductivity as given by the
general conductivity formula �Eq. �1�� or the formulae ob-

tained using the cumulant approach �Eq. �14� and equations
thereafter� is evaluated for a specific configuration of disor-
der. The wave functions ��� and energies � are therefore the
exact corresponding eigenstates and eigenvalues. Now the
procedure is repeated for all the possible configurations and
averaged with the appropriate weighting factors. Before ex-
amining the higher order terms �Appendixes B and C�, let us
understand the significance of this result and compare with
other well-known approaches.

IV. COMPARISON TO OTHER THEORIES

A. Streda result

We can rewrite Eq. �14� in the form

�xy
�1 = − e� �

�Bz
�

−�

E

��E�,Bz�dE��
E=f

, �15�

where ��E� ,Bz� is the density of states �DOS� with magnetic
field.

This expression is the quantum term of the Streda
formula.18 This author reduced the Kubo formula to two
terms called �xy

I and �xy
II �Eq. �15� above�. The antisymmetric

part of the other term, �xy
Ia, should be contained in the re-

mainder of the cumulant expansion. Our term �Eq. �15�� dif-
fers from Streda’s18 by a minus sign. The sign problem can
be traced in Ref. 18 to one transformation �Eq. 11 of Ref. 18�
where there should be a minus sign on the right-hand side.

B. Classical limit

If, instead of Eq. �7�, we write as in Ref. 19

���x��� = − i�
���vx���

� − � +
i�

�

, �16�

where � is a lifetime, we can reduce the first term of the
cumulant expansion to the classical result. By adding a life-
time, we effectively assume that the electrons are subject to
resistive scattering processes. Using the effective-mass
Hamiltonian for the periodic part of the Hamiltonian also
allows us to replace m with the effective m�. The finite life-
time then represents all the scattering processes that break
the translational invariance of a Bloch electron with effective
mass m�. This includes disorder and electron-phonon scatter-
ing treated in the Born approximation. When working in this
approximation, there is no configuration average to be done
anymore.

We consider only the term linear in Bz in Eq. �8�, the one
involving the eBzx /m part of vy �see Eq. �5��, which gives
the diagonal mass tensor term. Then, Eq. �8� together with
Eq. �16� yields the cumulant,

�xy
�1 =

e2

	m
�eBz��

�

−

� f���
��

����x2���

	
e2

	m�
�eBz��

�

−

� f���
��

��
�

�2����vx����2. �17�

This leads to the very well known classical result
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�xy
�1 =

Ne2�

m�

eBz�

m�
= �xx

eBz�

m� , �18�

where N=�� f�m�v f
2.

V. INFLUENCE OF THE SPIN-ORBIT COUPLING

Spin-orbit coupling introduces a number of contributions
to the Hall current. New terms arise, due to the spin-
dependent velocities from Eqs. �4� and �5� and from the ef-
fect of the spin-orbit interaction on the energy levels. We
examine this last effect first. Also, as pointed out in Sec.
IV B, for the class of problems where we have a periodic
system+impurities, wherever the bare mass appears in the
following text �except when it comes from the spin-orbit
Hamiltonian�, we can replace bare mass with the effective
mass �m�� and drop the periodic part of the Hamiltonian in
the remaining analysis.

A. Effect of the spin-orbit interaction on the Hall current
from the changes in the energy levels and wave functions

Consider the first-order cumulant result with the zero-
order velocity operators �including the −

eBzx

m term�. The ad-
vantage of the cumulant expansion is that it allows us to
analyze a very complex phenomenon, the effect of the spin-
orbit coupling on the Hall conductivity, via the eigenstates.
We write, to first order in perturbation theory,

��Bz� = �
0�Bz� + ���Hso��� . �19�

The spin-orbit Hamiltonian being dependent upon the Pauli’s
matrices, we should remember that the state ��� must now be
a spinor �two components vector�. The action of taking the
bracket will leave a scalar and, as we use the same state at
this order, only the z component survives,

���Bz�
�Borb

= − e���xvy��� =
��

0�Bz�
�Borb

+ �z
� �

�Borb
����

i

�ili,z��� ,

�20�

where

�n =
�eZn

4m2c2�4�0��r − Rn�3
, �21�

�z
������z���, and li,z is the z component of the orbital an-

gular momentum at site i.
The first term in Eq. �20� is the one we examined above in

the classical limit and is intuitively very attractive. The mag-
nitude of the Hall current per eigenstate is related to the
sensitivity of the energy level to an external magnetic field.
Its sign depends on whether the magnetic field increases or
decreases the energy of the eigenstate. In particular, it also
follows that the contribution of a localized state is negligible.
In reality, localized states should actually give exactly zero.
It trivially follows that the zero is recovered only after sum-
ming the remaining contributions in the cumulant series.
Keeping only the first cumulant does not give the exact result
when the level in question is a localized level, with discrete

energy levels. But the first-order result is close to zero, and
therefore can be said to represent a good approximation. See
Appendixes B and C for the analysis of the higher order
cumulants.

For delocalized states, there is more information in the
first term of Eq. �20�. Normally, for weak scattering, when  f
is near the top of the band, we have the hole sign, because
the magnetic field can only lower the energy near the top of
the band. Near the bottom of a band, we have the electron
sign because the magnetic field confines the carrier and
raises the energy of the electrons. This rule is also true for
disordered eigenstates. The effect of the magnetic field on
the energy levels can be evaluated in second order perturba-
tion theory in the presence of disorder.

The anomalous term can now be studied by going to first
order perturbation theory in B-field with exact eigenstates.
The term −�BL ·Borb generates

��� = ��0� + �
�0

��0� − �BL · Borb��0�
��0�

�0
− �0

. �22�

Substituting Eq. �22� in the second term of Eq. �20�, keeping
only the z components, we obtain terms in the energy which
involve a factor of the type

�g�
zz = �

�

�i
�il��

i,z � j
l��
j,z

� − �

. �23�

The sign of the anomalous process depends upon the sign of
a quantity which is closely related to the electron g shift and
which itself can be electronlike or holelike. Thus the first-
order cumulant can be written as

�xy
�1 = �xy

�1�n� +
e2

	

1

�e���

−

� f���
��

��B�z
��g�

zz. �24�

Let us compare the relative magnitude of the two terms of
Eq. �24�. At very low T �− �f

� =
�− f�� we can rewrite the
Hall conductivity �Eq. �24�� and the current is

Jy = �xy
�1�n�Fx + e2�� f�

�

2m
��z�f

�gzz� f�Fx. �25�

With �� f��1045 /m3 J and Fx=104 V /m we have for the
anomalous contribution Jy

an=103�g��z�Fx A /m2, which is
the same order of magnitude as the normal process with N
=1026 /m3, giving the normal Hall current Jy

n=106 A /m2 or
105���c��Fx A /m2 where ��c��10−3. In principle, the nor-
mal and anomalous terms can have opposite signs. The re-
sults of Eqs. �24� and �25� are very elegant, and by writing
�g=2−g� we have essentially recovered the Fermi level ver-
sion of the Chazalviel20 and Nozières and Lewiner21 result.
Chazalviel20 computes the single carrier wave packet motion
in an electric field without using the Kubo linear-response
formalism. We also note that in this form, the anomalous
term apparently has no dependence on the relaxation time.
Finally, and most importantly, it can also be related to the
Karplus and Luttinger10 result in the limit of high tempera-
ture when the Karplus and Luttinger energy gap between the
Kane-Luttinger subbands is taken as ��kBT and �g�

�so

� .
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In the Karplus-Lutttinger10 Bloch wave-function formal-
ism, the anomalous Hall effect, even though it is intrinsic, is
a Fermi level property at low temperatures. In Ref. 10, the
spin-orbit interaction is treated in first-order perturbation
theory using Bloch functions. We have also used first-order
perturbation, but the Fermi level property, here, is a result of
keeping the first-order cumulant. An interesting point is that
Karplus and Luttinger did not use the Kubo formula. They
arrived at a similar expression, except that the matrix ele-
ments are always interband matrix elements. The reason is
that their starting point is the Bloch function, so that in the
absence of an explicit treatment of disorder scattering, only
interband matrix elements are left when the matrix elements
of position and momentum operators are considered. Note
that one way of calculating the g shift, when we have weak
disorder, is to use the Kohn-Luttinger wave functions. One
can compute the g shift �gk,� in the exact band states.22

In summary, in this section, we have derived a result
which can be related to the Karplus-Luttinger intrinsic AHE
�Ref. 10� and we have made contact with the Chazalviel,20

Nozières and Lewiner,21 and Sinova8,9 results using a simple
and unified formalism.

B. Side-jump Hall current

The velocity terms generated by the spin-orbit coupling in
Eqs. �4� and �5� have been shown by Wölfle and Muttalib23

to give rise to a term of a form called the “side-jump Hall
effect” in the linear-response Kubo formula, which is

Jy = − Ne2��z�
�

4m2c2Fx. �26�

However, this result is obtained only after a complex dia-
grammatic sum of potential scattering events. A similar result
was derived previously and more simply from the same ve-
locity term by Lyo and Holstein24 using scattering theory and
originally by Berger.25 We shall now rederive a contribution
to the Hall current which has the same structure but is more
closely related to the Rashba effect.26 It is derived using
linear response with the external-field-induced spin-orbit
term in the Hamiltonian below. The linear-response analysis
will show us how the presence of the lattice goes to modify
the Hall conductivity even when we have disorder. Treated in
linear response, the Rashba coupling term will give a side-
jump-like Hall current. We do not use the cumulant approach
or effective-mass approximation because it is easy to treat
this term exactly.

Consider again that part of the spin-orbit coupling which
is itself dependent on the applied external field Fx �see Eq.
�3��. This term is a contribution to the total energy which
directly depends on the external field. As part of the Hamil-
tonian, this term creates a departure from equilibrium, and
must therefore be treated on the same footing as the usual
electric potential eFxx. We therefore start from first prin-
ciples, with the density matrix. When we take all such terms
in the Hamiltonian as the perturbation Hpert, the change in the
density matrix is given by

�D�� = ���Hpert���
f��� − f���

� − �

, �27�

where

Hpert = − eFxx +
�

4m2c2 ��Vext�r� � p� · � , �28�

with Vext�r�=−eFxx.
The second term of Eq. �28� involves the external applied

electric field, and one can use linear response and ask: what
Hall current does it produce in the presence of disorder? We
can evaluate the thermally averaged velocities in the usual
way. We consider the external-field-independent eigenstates,
including disorder and the Zeeman splitting. These states can
therefore be picked to have either spin-up or spin-down
eigenstates in a chosen direction. Thus the y current pro-
duced by the second term from Eqs. �27� and �28� is given by
�spin projection in z direction and keeping only the
y-momentum term�

Jy = −
e2

	
Fx�

�,�
���vy������

�

4m2c2 py���
f��� − f���

� − �

�z
�.

�29�

If we now use mvy = py and the sum rule �to be discussed in
detail in Sec. V D�

1

2m�

= �
�

����v�����2

� − �

, �30�

where �=x or y, applied to the y operator, we have the very
simple and elegant result

Jy = −
e2

	

 �

4m2c2�Fx�
�

f���
m

m�

�z
�, �31�

which apparently only depends upon the effective mass. This
is true as long as Eq. �30� can be used to define effective
mass, i.e., if all incoherence is neglected. The interpretation
of this sum rule in the Kubo formula context is not trivial. If
we include the entire infinite spectrum in the sum of Eq.
�30�, then we have the trivial result m�=m, and we obtain a
contribution which looks exactly like the Lyo and Holstein24

and Berger25 side-jump Hall current but is clearly based on a
different logic �Rashba term�. Note that in our theory, the
spin polarization is now summed over the entire band and is
not just the Fermi level spin.

In the framework of a finite band model, one can interpret
Eq. �30� as the effective mass. The spin-orbit terms associ-
ated with the lattice can be included in Eq. �30�. In the weak
disorder limit, one could compute Eq. �30� using the Kane
method. One can see that, in the Kane model, Eq. �30� is
indeed the effective mass. The effective-mass correction in
Eq. �31� can, then in principle, increase the current up to 2
orders of magnitude �InSb for example�. But the side jump
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�Eq. �31�� is, even with effective mass, for extended states,
much smaller than the Karplus-Luttinger contribution.
We have Jy =10−29��z�NFx A /m in two dimensions. In
three dimensions, with the same numbers we have
10−3Fx��z��m /m�� A /m2 compared to 103Fx��z��g A /m2

from Eq. �25�. Note that the huge Bloch function enhance-
ment evaluated in various forms by Chazalviel,20 Berger,25

and Fivaz27 and which make the side-jump term important
does not appear in Eq. �31�. Chazalviel, for example, used
the Heisenberg commutator for vy and Kane wave functions
to derive the Hall velocity and then derives a similar expres-
sion for the Hall current using Drude theory. We have de-
rived an expression which is similar in structure to what is
called the side-jump Hall current in the literature. The deri-
vation we have used is however not the same as that of
Wölfle and Mutallib,23 Lyo and Holstein,24 and Berger.25 In
our formula, the spin-orbit coupling can be enhanced by the
lattice, but the effect is relatively small, and directly related

to the effective-mass lowering �see Eq. �31��. The so-called
side-jump theories24,25 in which the mechanism is due to the
spin-orbit scattering induced sideways jump at impurity po-
tentials, and the associated large enhancements caused by
Bloch functions, have not been recovered using the present
Kubo formula method. To complete the analysis of Eq. �31�
we need a discussion of the sum rule of Eq. �30� and we will
defer this to Sec. V D because a similar term is encountered
in Sec. V C.

C. Effect of the spin-dependent velocity on the Hall current:
The terms which are due to the internal potentials

Let us consider the contributions to the Hall current which
results from including the contribution of the remaining spin-
orbit velocity terms �Eqs. �4� and �5�� in the Kubo formula.
These now involve the lattice potentials as sources of
velocity. For Coulomb potentials, we have

���vx������vy��� → ����
n

eZn�

4m2c2�4�0�
y − Yn

�r − Rn�3
�z������vy���

	 �
�

����
n

�
1

�r − Rn�3
������y�z������vy���

	 ����
n

�
1

�r − Rn�3
������y�z������vy��� , �32�

where ��
eZn�

4m2c2�4�0� .

Two approximations were made here. Yn takes alterna-
tively positive and negative values and the term involving it
would be zero if r were not present. But, even if we include
r, it will always give a smaller contribution compared to the
first and we therefore neglect it. Second, 1

�r−Rn�3 is local and

therefore cannot couple different sites but, in tight-binding
for example, could couple different orbitals at the same sites.
We considered that the main contribution comes from the
matrix element taken between the same eigenstate and this is
why we considered only the ���= ��� term in the previous
equation. One has to note that the original integrals in Eq.
�32� are convergent but when one breaks them up, then the
integral ��� 1

�r−Rn�3 ��� is strictly speaking not convergent be-
cause one has taken one position term y−Yn out of it. The
underlying assumption which allows us to make this decou-
pling is that the orbit radius is never allowed to be smaller
than the effective atomic orbit of the valence state so that the
cubic singularity does not occur.

This term gives rise to a contribution in the first cumulant.
To obtain it, we start from Eq. �6� instead of Eq. �8�. We
substitute Eq. �32� in Eq. �6� and use Eq. �7� to transform
���y��� to ���vy���. The result is

�xy =
�2e2

	
�
�

−

� f���
��

���

�

��

 1

2m�
��z

�, �33�

where

�� = ����
n

eZn�

4m2c2�4�0�
1

�r − Rn�3
��� . �34�

Again we have used Eq. �30�. Following Datta,19 we will
assume that, in a crystal, the sum rule of Eq. �30� is indeed
the effective mass. The sum rule �Eq. �30�� will be discussed
in detail in Sec. V D. Note that if we use Eq. �16� with
broadening, then an exact result can be obtained by taking
the derivative with respect to the broadening � i�

� � instead of
the energy in Eq. �33�. This relation will be used to derive
Eq. �36� for the strong scattering limit.

D. Problem of the sum rule of Eq. (30)

There is a certain arbitrariness in the use of the sum rule
of Eq. �30� which we should clarify. We note that if we use
the standard transformation of Eq. �7�, then it follows, in
principle, that when we sum over the entire real spectrum of
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the Hamiltonian, we obtain the free electron mass on the
left-hand side. This is simply a consequence of the trivial
identity pxx−xpx=−i� with px=mvx.

However, if we follow Datta,19 and use the linear-
response density matrix to compute the acceleration of a
particle in an electric field, then we obtain the effective mass,
in the sense of Newton’s law, as given by Eq. �30�. Conse-
quently, this gives the absurd result that the accelerating par-
ticle is always free, irrespective of what its initial state is. In
effect, the trivial result signifies that if we wait long enough,
then even a strongly bound electron will eventually be free in
an electric field. That is, this result �mass is free mass� would
represent the very long time behavior, when the history of
the particle is irrelevant, and its acceleration in a constant
field is truly dominated by what happens when it has reached
its final free state. Datta19 concluded that he should use a
finite band in the evaluation of Eq. �30�, and then the left-
hand side is indeed the effective mass in the sense of the
tight-binding band structure, for example.

The solution of this problem, in general, seems to be that,
in a transport situation, where electrons are injected at one
end and absorbed at the other, the sum can only run over that
part of the spectrum which is accessible to the carrier in its
lifetime, i.e., for which �������vx����2
��−�−��� is fi-
nite. In weak scattering, the particle lives in energy levels
near the Fermi level which have an effective mass, because it
relaxes and emits energy to the lattice. In a strong scattering
situation, the kinetic energy of the carrier can be of the same
order as the scattering energy uncertainty �

� . So here, we can
relate the sum on the right-hand side of Eq. �30� directly to
the quantum diffusivity D�

0 �see Appendix D�. We propose
therefore, in the strong scattering limit, where Bloch’s theo-
rem does not apply, to define the effective mass, in the sum
rule of Eq. �30� by the relation

1

m�

= 2c�

D�
0

�
, �35�

where c� is a constant ��
��−����

� �� which carries a sign and
is averaged over the band �see Appendix D for a formal
representation�. It is of order 1 when the energy � is near
the bottom of the band or in a rapidly changing region of the
DOS. We shall henceforth absorb this constant in the defini-
tion of an effective diffusivity, D�. Equation �35� is exact
�Appendix D�.

In the random-phase limit, c� is a relatively weak function
of energy and can be treated as a constant. The unit of time is
the scattering time. Acceleration with strong disorder is
therefore drift velocity divided by scattering time. With the
same definition, in the semiclassical limit we therefore have

�

��

 1

2m�
� � −

D��

�2 . �36�

It follows that a localized initial state ��� has no acceleration
without phonons; i.e., at zero temperature, its effective mass
in the sense of Eq. �30� is infinite. If one evaluates what
diffusivity one needs to reproduce the electron mass using
Eq. �35�, one has D�1 cm2 s−1 which is not a small value in
a disordered system. We now have a way of interpreting

terms involving the effective mass m�. For example, for

strong disorder, expressions of the form ��
1

m�

�2f���
��

2 as en-
countered in Appendix B for the second-order cumulant can
be written as

−� D�����
�

�

�
�
� −  f�� =

1

�
� ����

�
�

f

, �37�

with ���=���D��, where ��� is the energy-dependent
conductivity with universal scaling properties near mobility
edges.2

E. Resistance dependence of the anomalous term

Experimentally one is normally interested in the resis-
tance dependence of the AHE and this is the criterion used to
discriminate between possible models. For example, the ob-
served resistance independence of the experimental anoma-
lous Hall conductivity in dilute magnetic semiconductors is
taken as proof that the AHE is intrinsic. However, it follows
from the present analysis that the apparent scattering-time
independence of the anomalous Hall conductivity, as derived
here in the form of Eq. �24�, and by Karplus and Luttinger,10

and by Jungwirth et al.,7 constitutes a very special limit. The
scattering-time independence of the g shift �Eq. �23�� follows
when the matrix elements are dominated by interband pro-
cesses where the energy differences are �

�

� , �see Ref. 10 for
example�. But this implies that the basic band structure is
Bloch-type, with well-defined semiconductor bands. This is
obviously not always the case, and there can be many situa-
tions where disorder and band crossings wash out the Kane
subband gaps, and give rise to arbitrarily small energy de-
nominators in which the lifetime directly enters the AHE as
well. Thus, the g shift �Eq. �23�� can very well involve the
conductivity scattering time.

The assumption of Bloch functions is made by Jungwirth
et al.,7 and the resistance independence of their result also
rests on the existence of well-defined subbands, and the sums
run over all occupied levels. Thus we conclude that for
strong spin-orbit scattering and weak disorder scattering, the
anomalous Hall conductivity will not depend strongly on the
resistance, and this then accounts for some of the experimen-
tal observations on the AHE.28 In contrast, for weak spin-
orbit coupling and strong disorder, the anomalous Hall con-
ductivity can vary as the scattering time �n, 0�n�2. The
Bloch matrix elements20 are not appropriate in the strong
disorder limit, and the present approach, though perturba-
tional, is more appropriate.

VI. DISCUSSION

The Kubo formula was expanded in a cumulant expansion
which converges quickly at high temperatures. One can also
use the series expansion at lower temperatures, provided one
examines the higher order contributions for convergence.
Working with the effective-mass Hamiltonian, and keeping
only the contributions to first order in magnetic field, allows
one to stop the expansion after the second-order cumulant.
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The higher order cumulant contributions are examined in
Appendixes B and C.

The second-order cumulant derived in Appendix B also
has a very interesting structure. It gives terms which scale as
the derivative of the density of states at the Fermi level, both
for the normal and the anomalous contributions. Previously,
Bush and Guentherodt29 had suggested that the sign of the
Hall effect in disordered materials scales as the sign of the
derivative of the density of states at the Fermi level �elecron-
like for increasing and vice versa�. In the present theory, we
have actually successfully identified the quantities that deter-
mine the sign of the Hall effect. Indeed, we have made the
very interesting observation that the sign of the normal term,
as expressed in the first term, is related to the derivative of
the energy with respect to B field. In the second cumulant
contribution, the sign is related to the derivative of the den-
sity of states at the Fermi level �at low T�. Interestingly the
two terms have opposite trends because an increasing density
of states actually gives the hole sign, and not as one would
intuitively expect and as Bush and Guentherodt29 suggest,
the electron sign. This is a truly remarkable result when ap-
plied to the strong scattering limit, because normally in weak
scattering, the first term is dominant and that gives the intui-
tive result from Ref. 29. But in very strong scattering, for
example in the amorphous limit, and in the region near the
mobility edge, it may happen that the second term domi-
nates. If this happens, then we have a sign anomaly because
the increasing density of states at  f for n doping gives the
hole sign and vice versa. This is exactly what is observed in
the band edge of doped amorphous silicon.30 This observa-
tion merits a more detailed investigation which goes beyond
the scope of this paper.

In disordered systems, one can use the coherent potential
approximation �CPA� �Ref. 31� to describe the disordered
band structure for example32,33 and get explicit results for the
sign of the Hall effect. It turns out that there is no simple rule
for the sign of the Hall coefficient in CPA either, but at the
band edges, we do indeed have the same behavior as pre-
dicted here. This has been discussed in detail in Refs. 1 and
33. In Ref. 1, the case of an impurity band is also considered.

The disadvantage of the cumulant method is that the
low-temperature limit has to be examined with care for con-
vergence. In situations with Bloch symmetry where the
dominant matrix elements are on the same energy shell, this
is no problem. But in general, with disorder, there is, in the
present formulation, in lowest order in magnetic field Bz,
unfortunately, an infinite number of terms. This seems a big
problem at first, but then it resolves itself. The resolution of
the difficulty is most obvious when we apply the first-order
term in the limit that the states are localized at  f. We obtain
a Hall conductivity which is small, but nonzero. This small
contribution must be canceled by the remaining linear terms
in the series. Nevertheless the approximation is still good
because it gives a negligible contribution to the Hall current,
knowing that the exact result should be strictly zero. Equa-
tions �B3� and �C1� have terms which scale as Bz. They are
generally smaller than the first-order contributions we de-
rived in Sec. V. However, they involve higher derivatives of
the Fermi function and can be dangerous to handle at low T.
One may infer that, if the system has a density of states and

scattering times which are only weak functions of energy at
the Fermi level, these higher order cumulant terms are neg-
ligible. If the density of states is a strong function of energy,
the expansion will not converge so easily. Indeed, near the
band edges, there will be mobility edges and localized levels
which must give rise to a null result without phonons, but the
null result must be arrived at by cancellation of many, albeit,
small contributions.

At high temperatures, the higher order terms cause no
problem and can be neglected. At any temperature we may
conclude that a very good approximation is obtained by
keeping only the first and second cumulants, the spin-orbit
velocity contribution, and the external-field-induced spin-
orbit term. The final approximate formula for the Hall con-
ductivity thus becomes

�xy =
e2

	
�
�

−

� f���
��

��− 1

�e�
��

�Borb
+

�

2m�e�
�z

��g�
zz�

+
e2

2 ! 	
�
�

�

2m�

�2f���
��

2 ���e�Bz

m
+ ����z

��
−

e2

	

�

4m2c2�
�

f���
m

m�

�z
�

+
e2�2

	
�
�

−

� f���
��

���

�

��

 1

2m�
��z. �38�

We may call Eq. �38� the weak-to-intermediate scattering
Hall conductivity. When we evaluate the cumulants, one can
use the effective-mass Hamiltonian so that the periodic po-
tential is not part of the Hamiltonian with which the higher
order commutators �Eq. �10�� are to be evaluated. This
means that the only terms which contribute above the
second-order cumulant, and which scale linearly with Bz,
will be those which depend on the disorder and spin-orbit
part of the Hamiltonian and this makes the approximation of
only keeping up to second order very accurate. Each of the
four additive terms of Eq. �38� will now be discussed and a
simple interpretation given.

The first expression in the bracket of the first term has
been discussed and is easy to interpret, but it is not com-
pletely trivial to see that it simply reduces to the classical
result �Eq. �18�� if we used Eq. �16� or Bloch functions in the
Kubo formula with a constant lifetime. In the pure quantum
limit it gives the Streda result but it is actually the normal
Hall effect. The way this term should be handled depends on
the problem in question. In weak scattering it again gives Eq.
�18�, with a free electron mass. In the tight-binding represen-
tation, one can evaluate it using second-order perturbation
theory in the magnetic-field-dependent term in the Hamil-
tonian.

The second part of the first bracket involves the g shift of
the delocalized levels above the mobility edge. In compari-
son, the localized g shift is negligibly small. In the weak
scattering limit, the g shift can be evaluated using the Kane-
Luttinger wave functions.10 This is given by Roth et al.22 In
an incoherent situation, a disordered system with no Bloch
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symmetry and strong scattering, we should use m�= �

D�
as the

effective mass.
For the second term �see Appendix B�, the one involving

a second derivative of the Fermi function, one can, using the
m�= �

D�
approximation, obtain integral products of the type

���=���D�� as shown in Eq. �37� which are energy-
dependent conductivities, and which obey well-known uni-
versal scaling relations near the mobility edges.

The third term was shown to be due to the effect of the
external-field-induced spin-orbit energy �Sec. V B�. With
m�=m�, this term reduces to the same form as the so-called
side-jump contribution. Our theory shows that it can be en-
hanced via a small effective mass and even extended to apply
to strong scattering via Eq. �35�.

Considering the second and third terms, we propose that,
to a good approximation, in most situations where Bloch
functions cannot be used, we may replace m�= �

D�
, once the

sign has been determined via Eq. �30�. This accounts for
localized states if any are present, because D� is zero.

The last term in Eq. �38� is due to the spin-orbit contri-
bution to the velocity operators via the internal potentials
from Eqs. �4� and �5�. This also vanishes for localized states.
Above the mobility edge, this contribution is comparable to
the second expression in the bracket of the second term. This
can be seen using the strong scattering correspondence �Eq.
�36��. The last term in Eq. �38� then reduces to a term which
resembles the usual skew scattering term12 provided we in-
terpret the skew scattering rate for Coulomb spherical poten-
tials as

1

�s
� =

�e

4m2c2�4�0�
����

n

Zn

�r − Rn�3
��� . �39�

Thus, for disordered systems, the last term of Eq. �38� can be
written as

�xy
skew = −

�e2

	m
�
�

−

� f���
��

� �

�s
�

mD�

�
�z

�. �40�

Note that the sum runs over all the potentials in the lattice.
So the skew scattering and g-shift terms include both extrin-
sic and intrinsic contributions. Note that very recently,
Chudnovsky,34 using a different approach, and for spin Hall
effect, also obtained a term where all the potentials are in-
cluded. In the form of Eq. �40�, appropriate for disordered
systems with no Bloch symmetry, the Bloch enhancement
does not appear. If we neglect the host spin-orbit coupling
and only include the impurities, then both g shift and skew
term are, by definition, extrinsic contributions, and the mass
in Eq. �39� is necessarily the effective mass. It is the
effective-mass particle which generates the impurity spin-
orbit magnetic field.

Let us now reexamine the question of the theoretical re-
sistance dependence of the AHE. From the above analysis
we note that this all has to do with the way we treat the
matrix elements and at what stage we introduce incoherence
and lifetime. This can already be seen in the first term, which
can be treated as a quantum effect, as in Streda18 or in the
semiclassical limit. The same is true for the spin-orbit terms.

Thus, if we keep to the notion of effective mass, we have the
quantum result. If we use the transformation of Eq. �35�,
which involves the diffusivity, then we have the connection
with conductivity. As an example, we can take the first two
dominant terms in Eq. �38� and write them, using the defini-
tion of the g shift given by Roth et al.22 �we assume � and Eg
to still be defined�, in the incoherent limit as

�xy
�1� = �xx
 eBz�

m� � +
e2

	
�
�

−

� f���
��

�
�

�

m
�z

��− 
m
D�

�
− 1� �

3Eg + 2�
� , �41�

where we have used Eq. �35� in the g-shift term.
Now, we see that what was a pure quantum term with

effective mass, has, in this limit, become a term which de-
pends on the diffusivity. The AHE Hall coefficient can, it
seems, change from a linear scaling with resistance in Eq.
�41� to a resistance squared �relaxation time squared� behav-
ior if

D�

� becomes m�
−1, as is observed in diluted magnetic

semiconductors.28 The experimentally observed RA��xx
2 de-

pendence implies, therefore, that the effective-mass concept
remains valid in these systems.

We have focused our attention on the anomalous contri-
butions, and how they undergo a transformation, in going
from the weak scattering to the strong scattering limit. A
similar change must occur for the first term of Eq. �41�. Here
too, we must replace the Drude �xx by

�xx = e2� d
−
� f��

�
����D�� �42�

and the band mobility term
e�Bz

m� by

e�Bz

m�
= eBz

D

��
, �43�

at low temperatures. The notation in terms of diffusivity D is
valid in the weak scattering limit too, but now one can see
what happens as we approach the mobility edge using stan-
dard localization theory and ���=���D��.

We have shown that the AHE Hall coefficient RA can vary
with resistance �xx

n with 1�n�2 depending on the degree of
coherence. The essential point seems to be the way one treats
the sum rule given by Eq. �30�. This was already a problem
for Datta19 in his analysis of the Hall effect in his 1980 paper.
Equation �30� may be treated as the well-known f-sum rule,
but it is clearly not realistic to sum over an infinite excited
state spectrum, without taking into account the finite lifetime
of the states. The question then becomes: when is the sum on
the right-hand side of Eq. �30� 1

2m� and when is it closer to D
�

which is the sum evaluated in the semiclassical limit, and
also derivable from ���x2����D��? The interesting and im-
portant side of this last result is that it gives the correct null
result for transport in localized states, and therefore must be
the correct approximation near the mobility edges.

We have derived a side-jump-like contribution to the Hall
current using linear response to the �Rashba� spin-orbit
interaction26 which is produced by motion in the external
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potential. Our result is closely related to the Rashba current26

and is in principle, exact, up to the evaluation of the sum rule
�Eq. �30��. The sum rule has to be treated with care in both
the coherent and the strong scattering limit. In the incoherent
limit, and especially near mobility edges, we have the rela-
tion m�= �

D�
which then gives a very appealing result, namely

�xy
sj = −

e2

	

�

4m2c2�
�

f���
mD�

�
�z

�. �44�

This gives a vanishing side-jump-like Hall effect �Rashba�
contribution from those states in the localized part of the
band.

Adding Eqs. �41� and �44� we have the strong scattering
Hall conductivity limit. As in the QHE, every conducting
state contributes. However, the full enhancement of the spin-
orbit coupling �see Refs. 12 and 35 for example� does not
appear in our expression. The most interesting aspect of the
side-jump-like �Rashba� term �Eq. �44�� is that if the Fermi
level is in a region of localized states, say near the top of the
band, then this term dominates the Hall current since all
other terms are Fermi level terms, and vanish at low tem-
peratures. It would give us �using the free mass� Jy
�10−29Ndel��z�Fx A /m2 �Ndel=delocalized electron density�
which is, of course, a small but rigid current, analogous to
the quantum Hall current.

VII. CONCLUSION

The principal result of the cumulant method developed in
this paper is given by Eq. �38�. It is an expression for the
Hall current which allows for disorder and spin-orbit cou-
pling. For a typical doped semiconductor, we might expect
the following contributions to the Hall effect:

�1� The normal process �first term of Eq. �41��.
�2� The intrinsic AHE side-jump-like process �Rashba

term, Eq. �44��.
�3� The intrinsic AHE Karplus-Luttinger process �second

term of Eq. �41��.
�4� The skew scattering process due to impurities �Eq.

�40��. Here, the basic spin-orbit coupling has the effective
mass and not the free mass.

The skew term �Eq. �40�� is only relevant if both the
enhancement and the basic spin-orbit coupling are large and
the concentration of impurities high enough �see Ref. 12 for
estimates�. The side-jump term is only important if the effec-
tive mass is small or the Fermi level is in a region of local-
ized states. In most situations with weak disorder, we expect
the Karplus-Luttinger intrinsic term to dominate the AHE. In
the limit of strong scattering, when the use of Bloch func-
tions and uniform lifetimes is no longer valid, we may re-
place the effective mass in Eq. �38� using the concept of
quantum diffusivity; i.e., put m�

−1→ D�

� , and use derivatives,
as explained in the text.

For magneto-optical Faraday angle measurements, for ex-
ample, we need the frequency-dependent Hall conductivity.
One can show that in weak scattering, where we use the
effective mass for Eq. �30�, we add a factor 1

1+����2 to the four
main Hall conductivity results listed above. In strong scatter-

ing, where we use the diffusivity to describe Eq. �30�, D��
is replaced by D� ,��.
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APPENDIX A: DERIVATIVE OF THE HAMILTONIAN
WITH RESPECT TO THE MAGNETIC FIELD

With Ai= �0,Bzxi� and py
0=mvy

0, the kinetic part of the
Hamiltonian is

T = �
i
�m�vi

0�2

2
− eBzxivy

0,i +
e2Bz

2

2m
xi

2� . �A1�

Thus, with H=T+V+Hso−
g�B

2 Bz�i�z
i , we can write, remem-

bering that without the spin-orbit term in the velocity opera-
tor vy

i =vy
0,i−

eBz

m xi,

�H

�Bz
= �

i
�− exivy

i −
g�B

2
�z

i� . �A2�

Thus,

���
�H

�Bz
��� = − e���xvy��� −

g�B

2
����

i

�z
i ��� . �A3�

We now want to transform the left-hand side of Eq. �A3� to
obtain Eq. �13�. To do so, we just apply the well-known
Hellman-Feynman theorem and we obtain ��� �H

�Bz
���=

��

�Bz
and

thus Eq. �13�. Remember that vy in the equation does not
contain the spin-orbit term of Eq. �5�.

APPENDIX B: THE SECOND-ORDER TERMS
IN THE CUMULANT EXPANSION

Consider now the second-order contribution to the Hall
conductivity. This can be written as

�xy
�2 =

e2

2 ! 	
�
�,�

���x������Hvy − vyH���
�2f���

��
2 , �B1�

where, as previously, vy = −i�
m

�
�y −

eBzx

m , dropping the spin-orbit
current operator. After evaluating the commutator we are left
with three terms,

i�
eBz

m
vx

0,
i�

m

�V

�y
, −

i�

m
px�

n

�n�z. �B2�

Only the first and third term give significant contributions in
this order. The first term is

�xy,1
�2 =

e2

2 ! 	
�
�,�

���x������i�
eBz

m
vx

0���
�2f���

��
2

=
e2

2 ! 	

�2eBz

m �
�

−

1

2m�
� �2f���

��
2 , �B3�
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where we have used the sum rule of Eq. �30� restricted to the
active energy band. For Bloch states restricted to the eight
Kane bands with spin-orbit coupling, the right-hand side of
Eq. �30� reproduces the eight-band k ·p calculated effective
masses. To conclude, we note that the cumulant expansion is
a powerful method when the bandwidth is very narrow and
�kBT. At low temperatures, when we use m�=m�, we obtain
for Eq. �B3�

�xy,1
�2 = −

e2

2!

�

m

�eBz

2m� �� ����
�

�
=f

. �B4�

Note that the cumulant expansion is not purely an expansion
in powers of Bz. There is a term linear in Bz in almost every
order. Using the effective-mass method, the linear term in Bz
becomes an expansion in powers of the Vdisorder / f. The con-
vergence is problematic near band edges where we have lo-
calization. We neglect the term given by the second term of
Eq. �B2�. The spin-orbit term, given by the third term of Eq.
�B2�, becomes

�xy,3
�2 =

e2�2

2 ! 	
�
�

1

2m�

��

�2f���
��

2 �z
�. �B5�

Again, at low T �neglecting other energy dependence under
the integral�, we can use

�
�

�2f���
��

2 = � ��

�
�

=f

. �B6�

If we assume that � ��
� �=f

� �
 f

, again, we have the same struc-

ture as before in Eq. �25�, this time with �g=
�����

 f
. With the

numerator of order 10−4 eV, this term corresponds to an ef-
fective g shift of 10−4 which is therefore smaller than the
first-order cumulant of its type. But, in general we remind
the reader that the cumulant expansion, as is also true for the
configurationally decoupled Kubo formula, is not accurate
near the band edges for reasons of Anderson localization.
When used in this region it can only apply above the mobil-
ity edge.

APPENDIX C: THIRD-ORDER CUMULANT

In the third-order cumulant, if we neglect terms of order
Bz

2 and �2, we have only the terms

�xy
�3 =

e2

3 ! 	
�
�

1

m�

�3f���
��

3 ���x2�y
2V�r�

���eBz

m
+ �

n

��n�r���z�����
�

m
. �C1�

The terms linear in Bz and spin-orbit coupling always go in
pairs, the spin-orbit term acting like an effective magnetic
field. The higher order terms form an infinite series with
products involving derivatives of the lattice potential. These
terms are small at high temperature and renormalize the first-
order linear terms in Bz and �n. In the effective-mass ap-
proach, the lattice potential no longer appears in the Hamil-
tonian so V�r� appearing in Eq. �C1� is due to impurities or
disorder.

APPENDIX D: EFFECTIVE MASS AND DIFFUSIVITY IN
THE STRONG SCATTERING LIMIT

Since the excited states can decay and must have a finite
lifetime, we can write the sum of Eq. �30� as

1

m���
= 2�

−W

W

d�����
���vx���2�� − ��

�� − ��2 + 
 �

��
�2 . �D1�

The quantum diffusivity is defined as

D� = ��
�

����vx����2
�� − �� . �D2�

Then it follows that we can write

1

m���
= 2�

−W

W

d������
����vx����2

�

��

�� − ��2 + 
 �

��
�2���� − ��

�

��
�

=
2c�D���

�
, �D3�

where c� is a constant, defined by Eq. �D3�. Its value and
sign depends on the density of states variation. One can also
see this by doing an integration by parts using the product of
the two functions in brackets. The constant carries a sign �as
does the effective mass� which depends on the energy. We
can rewrite it as c�= ���−��

��

� ��, where the average is to be
taken with the diffusivity weighting function under the inte-
gral as defined by Eq. �D3�. This equation is still exact. In
the random-phase approximation, kinetic energies are of the
same order as the energy uncertainty and c� is �−1 or +1
depending on whether we are near the top or the bottom of
the band.
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